
Appl. Comput. Harmon. Anal. 32 (2012) 389–400
Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

An empirical feature-based learning algorithm producing sparse
approximations ✩

Xin Guo, Ding-Xuan Zhou ∗

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2010
Revised 27 June 2011
Accepted 18 July 2011
Available online 26 July 2011
Communicated by Dominique Picard

Keywords:
Learning theory
Sparsity
Reproducing kernel Hilbert space
�1-regularizer
Empirical features

A learning algorithm for regression is studied. It is a modified kernel projection machine
(Blanchard et al., 2004 [2]) in the form of a least square regularization scheme with �1-
regularizer in a data dependent hypothesis space based on empirical features (constructed
by a reproducing kernel and the learning data). The algorithm has three advantages. First, it
does not involve any optimization process. Second, it produces sparse representations with
respect to empirical features under a mild condition, without assuming sparsity in terms of
any basis or system. Third, the output function converges to the regression function in the
reproducing kernel Hilbert space at a satisfactory rate. Our error analysis does not require
any sparsity assumption about the underlying regression function.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We propose a learning algorithm for regression. It is a modification of the kernel projection machine (KPM) introduced
by Blanchard et al. [2] and analyzed by Zwald [23]. The main advantage of this algorithm is its strong learning ability while
producing sparse approximations in a very general setting in learning theory, without any hypothesis on sparse representa-
tions.

In the regression setting, an input space X is a compact metric space and the output space Y = R. Let Z = X × Y and ρ
be a Borel probability measure on Z with ρX the marginal measure on X , and ρ(·|x) the conditional measure at x ∈ X . The
regression function fρ is defined as

fρ(x) =
∫
Y

y dρ(y|x), x ∈ X .

Our learning algorithm produces approximations of fρ in a reproducing kernel Hilbert space (RKHS). A symmetric contin-
uous function K : X × X → R is called a Mercer kernel if for any finite subset {xi}l

i=1 of X , the l × l matrix (K (xi, x j))
l
i, j=1

is positive semi-definite. For x ∈ X , we denote Kx = K (·, x). The RKHS associated with the Mercer kernel K is a Hilbert
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space H K completed by the span of {Kx: x ∈ X} under the norm ‖ · ‖K induced by the inner product 〈·,·〉 = 〈·,·〉K satisfying
〈Kx, Ku〉 = K (x, u). We define an integral operator LK on H K by

LK ( f ) =
∫
X

Kx f (x)dρX (x), f ∈ H K .

In this paper, we take a general setting in learning theory satisfying

fρ = Lr
K (gρ) for some r > 0 and gρ ∈ H K . (1)

Since LK is a compact, self-adjoint positive operator, we can arrange its eigenvalues {λi} (with multiplicity) as a nonin-
creasing sequence tending to 0 and take an associated sequence of eigenfunctions {φi} to be an orthonormal basis of H K .
Then the power Lr

K of LK can be written by Lr
K (
∑

i ciφi) = ∑
i ciλ

r
i φi and assumption (1) is equivalent to fρ = ∑

i diλ
r
i φi

where {di} ∈ �2 represents gρ as gρ = ∑
i diφi . The exponent r in (1) measures the decay of the coefficients {diλ

r
i } of fρ

with respect to the orthonormal basis {φi} of H K . It can be regarded as a measurement for the regularity of the regression
function fρ .

The eigenfunctions {φi} can be used to understand feature maps in learning theory. They can be approximated by em-
pirical features {φx

i } which are eigenfunctions of an empirical operator Lx
K associated with a sample x ∈ Xm . Throughout this

paper we assume that z = {(xi, yi)}m
i=1 is a sample drawn independently from ρ . We use x to denote the unlabeled part of

the data x = {x1, . . . , xm}. The empirical operator Lx
K on H K is defined by

Lx
K ( f ) = 1

m

m∑
i=1

f (xi)Kxi = 1

m

m∑
i=1

〈 f , Kxi 〉Kxi , f ∈ H K ,

where we have used the reproducing property of the RKHS that asserts 〈 f , Kx〉 = f (x) for any f ∈ H K and x ∈ X . So Lx
K

is a normalized sum of m rank-one operators and it is self-adjoint, positive with rank at most m. Therefore we can write
the eigensystem of Lx

K as {(λx
i , φ

x
i )}i , with eigenvalues λx

i arranged in nonincreasing order and λx
i = 0 when i > m, and the

corresponding eigenfunctions {φx
i }∞i=1 to form an orthonormal basis of H K . The first m eigenfunctions {φx

i }m
i=1 can be used

as empirical features for learning by regularization schemes in a data dependent hypothesis space span{φx
i }m

i=1. The data
dependence nature is reflected by the empirical features {φx

i }m
i=1 obtained from the data x. This idea was used in [2] to

introduce the KPM outputting
∑m

i=1 cz
γ ,iφ

z
i where the coefficient vector cz

γ = (cz
γ ,1, . . . , cz

γ ,m) is given with a regularization
parameter γ > 0 by

cz
γ = arg min

c∈Rm

{
1

m

m∑
i=1

V

(
m∑

j=1

c jφ
x
j (xi), yi

)
+ γ ‖c‖0

}
.

Here V : R
2 → R+ is a loss function and ‖c‖0 is the number of nonzero entries of the vector c = (c1, . . . , cm) ∈ R

m . The
KPM was analyzed in [23] for classification with V ( f , y) = max{1 − yf ,0} and for regression with V ( f , y) = ( f − y)2 in a
Gaussian white noise model.

In this paper we modify the KPM in the least square regression setting by using the �1-regularizer ‖c‖1 = ∑m
i=1 |ci|

instead of the �0-penalty. Our learning algorithm now takes the form

cz
γ = arg min

c∈Rm

{
1

m

m∑
i=1

((
m∑

j=1

c jφ
x
j

)
(xi) − yi

)2

+ γ ‖c‖1

}
, (2)

and the output function is

f z
γ =

m∑
i=1

cz
γ ,iφ

x
i . (3)

We use f z
γ to approximate the regression function fρ in H K .

The following Theorem 1, to be proved in Section 3, represents the solution to problem (2) explicitly, and thus shows
computational efficiency of our algorithm.

Theorem 1. For i ∈ N, denote

Sz
i =

{
1

mλx
i

∑m
j=1 y jφ

x
i (x j), if λx

i > 0,

0, otherwise.

Then the solution to problem (2) is given with i = 1, . . . ,m by
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cz
γ ,i =

⎧⎪⎨⎪⎩
0, if 2λx

i |Sz
i | � γ ,

Sz
i − γ

2λx
i
, if 2λx

i |Sz
i | > γ and Sz

i >
γ

2λx
i
,

Sz
i + γ

2λx
i
, if 2λx

i |Sz
i | > γ and Sz

i < − γ
2λx

i
.

(4)

In particular, cz
γ ,i = 0 if λx

i = 0.

Remark 1. Let us show how the eigenpairs {(λx
i , φ

x
i )} can be found explicitly. Let dx � m be the rank of the Gramian matrix

K := (K (xi, x j))
m
i, j=1. Denote its eigenvalues as λ̂x

1 � · · · � λ̂x
dx > λ̂x

dx+1 = · · · = λ̂x
m = 0, and associated eigenvectors {μ̂i}m

i=1 to
form an orthonormal basis of R

m . We have

λx
i = λ̂x

i

m
and φx

i = 1√
λ̂x

i

m∑
j=1

(μ̂i) j Kx j , for i = 1, . . . ,dx, (5)

λx
i = 0, and φx

i |x = 0, for i = dx + 1, . . . ,m.

In fact, for i = 1, . . . ,dx , we see that

Lx
K

(
m∑

j=1

(μ̂i) j Kx j

)
= 1

m

m∑
l=1

m∑
j=1

(μ̂i) j K (xl, x j)Kxl = λ̂x
i

m

m∑
l=1

(μ̂i)l Kxl

and ‖∑m
j=1(μ̂i) j Kx j ‖2

K = μ̂T
i Kμ̂i = λ̂x

i > 0.

For i = dx + 1, . . . ,m, λx
i > 0 would imply φx

i = 1
λx

i
Lx

K (φx
i ) = 1

mλx
i

∑m
j=1 φx

i (x j)Kx j and K(φx
i |x) = mλx

i φ
x
i |x where φx

i |x =
(φx

i (x j))
m
j=1 is the vector obtained by restricting the function φx

i onto the sampling points. It would then yield φx
i |x = 0 and

φx
i = 0, a contradiction. So we must have λx

i = 0. It follows that 〈Lx
K (φx

i ),φx
i 〉 = 0, which means 1

m

∑m
j=1 φx

i (x j)φ
x
i (x j) = 0

and φx
i |x = 0. In this case, φx

i is perpendicular to span{Kxi }m
i=1.

Note that for i = dx + 1, . . . ,m, λx
i = 0 implies cz

γ ,i = 0. So (
∑m

j=1 c jφ
x
j )(xi) = (

∑dx

j=1 c jφ
x
j )(xi) and optimization prob-

lem (2) is the same as cx
γ ,i = 0 for i = dx + 1, . . . ,m, and

(
cx
γ ,i

)dx

i=1 = arg min
c∈Rdx

{
1

m

m∑
i=1

((
dx∑
j=1

c jφ
x
j

)
(xi) − yi

)2

+ γ ‖c‖1

}
.

We shall conduct analysis for the error f z
γ − fρ in the H K -metric (stronger than the L2

ρX
-metric, as shown in [14]) and

derive learning rate for algorithm (2). Note that learning rates with the metric in H K yield those with the metric in C s(X)

when K is C2s with X ⊂ R
n . See [21].

Let us illustrate our analysis by the following examples when the eigenvalues {λi} have some special asymptotic behav-
iors. Throughout the paper we assume that |y| � M almost surely for some constant M > 0. Denote κ = supx∈X

√
K (x, x).

Theorem 2. Assume (1) and for some 1
2r < α2 � α1 < (1 + r)α2 − 1

2 and 0 < D1, D2 , the eigenvalues {λi} decay polynomially as

D1i−α1 � λi � D2i−α2 , ∀i. (6)

Let 0 < δ < 1. If we choose

γ =
(

21+2r D1+r
2 ‖gρ‖K + C K ,ρ

(
log

4

δ

)1+r)/√
m, (7)

then we have with confidence 1 − δ that

cz
γ ,i = 0, ∀m

1
2α2(1+r) + 1 � i � m, (8)

and

∥∥ f z
γ − fρ

∥∥
K � C1

(
log

4

δ

)1+r

m
− 2α2r−1−2(α1−α2)

4α2(1+r) , (9)

where C K ,ρ = 8κ2‖gρ‖K (λr
1 + 24rκ2r) + 16Mκ and C1 is a constant independent of δ or m (which will be specified in the proof ).
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Remark 2. Asymptotic behavior (6) for the eigenvalues {λi} of the integral operator is typical for Sobolev smooth kernels
on domains in Euclidean spaces, and the power indices α1 and α2 depend on the smoothness of the kernel [12]. When the

kernel is smooth enough, α2 can be arbitrarily large and learning rate (9) takes the form mε− r
2(1+r) with an arbitrarily small

ε > 0. When r is large enough, it behaves like mε− 1
2 with an arbitrarily small ε > 0.

Observe from (8) that the number of nonzero coefficients in the representation f z
γ = ∑m

i=1 cz
γ ,iφ

x
i is at most m

1
2α2(1+r)

which can be much smaller than the sample size m when α2 and r are large.

Theorem 3. Assume (1) and for some 1 < β2 � β1 < β1+r
2 and 0 < D1, D2 , the eigenvalues {λi} decay exponentially as

D1β
−i
1 � λi � D2β

−i
2 , ∀i. (10)

Let 0 < δ < 1 and choose

γ =
(

21+2r D1+r
2 ‖gρ‖K + C K ,ρ

(
log

4

δ

)1+r)/√
m,

then we have with confidence 1 − δ that

cz
γ ,i = 0, ∀ log(m + 1)

2(1 + r) logβ2
+ 1 � i � m, (11)

and

∥∥ f z
γ − fρ

∥∥
K � C2

(
log

4

δ

)1+r√
log(m + 1)m−

r−(log
β1
β2

/ logβ2)

2(1+r) , (12)

where C2 is a constant independent of δ or m (which will be specified in the proof ).

Remark 3. Asymptotic behavior (10) for the eigenvalues {λi} of the integral operator is typical for analytic kernels on
domains in Euclidean spaces [13]. When r is large enough (meaning that fρ has high regularity), learning rate (12) behaves

like mε− 1
2 with an arbitrarily small ε > 0.

Again we observe from (11) that the number of nonzero coefficients in the representation f z
γ = ∑m

i=1 cz
γ ,iφ

x
i is at most

log(m+1)
2(1+r) logβ2

which is much smaller than the sample size m.

Theorems 2 and 3 will be proved in Section 6.

2. General analysis

Our general analysis for algorithm (2) is the following theorem to be proved in Section 5.

Theorem 4. Assume (1). Let p ∈ {1, . . . ,m} and 0 < δ < 1. Choose γ to satisfy

21+2r‖gρ‖K λ1+r
p + C K ,ρ

(log 4
δ
)1+r

√
m

� γ , (13)

then with confidence 1 − δ we have

∥∥ f z
γ − fρ

∥∥
K � ‖gρ‖K λr

p +
√

2pγ

λp
+ C3 log 4

δ

λp
√

m
+ C4λ

min{r−1,0}
p

( ∞∑
i=p+1

λ
max{2r,2}
i

)1/2

, (14)

where C3 = 16
√

2Mκ + 23+max{2r,1}‖gρ‖K λr
1κ

2 and C4 = 2max{r,1}‖gρ‖K .

Let us give a concrete example with H K being the Sobolev space Hs(X) of integer index s > n
2 and X being the unit ball

X = {x ∈ R
n: |x| � 1} of R

n . When ρX is the normalized Lebesgue measure on X , a classical result in the theory of function
spaces (see e.g. [17]) asserts that condition (6) for the eigenvalues {λi} holds with α1 = α2 = 2s

n . Also, if fρ ∈ H(2r+1)s(X)

for some r > n
4s , we know that condition (1) holds true. Then the following learning rate can be derived from Theorem 4,

as in the proof of Theorem 2.
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Example 1. Let X = {x ∈ R
n: |x| � 1} and ρX be the normalized Lebesgue measure on X . If K is the reproducing kernel of the

Sobolev space Hs(X) of integer index s > n
2 and fρ ∈ H(2r+1)s(X) for some r > n

4s , then by taking γ = Cs, fρ (log 4
δ
)1+r/

√
m,

we have with confidence 1 − δ,∥∥ f z
γ − fρ

∥∥
K � C ′

1

(
log

4

δ

)1+r

m− 4sr−n
8s(1+r) ,

where Cs, fρ and C ′
1 are constants independent of δ or m.

3. Explicit formula for the coefficients

In this section we prove the representer theorem for algorithm (2). The �1-regularizer is important in the process. The
proof is an immediate consequence of the classical result on soft-thresholding in the context of orthogonal regressors [19],
once the orthogonality of {φx

i } on the data is derived (see (15) below). We give the proof here for completeness.

Proof of Theorem 1. Let i ∈ N. Since (λx
i , φ

x
i ) is an eigenpair of Lx

K , we have

λx
i φ

x
i = Lx

K φx
i = 1

m

m∑
j=1

φx
i (x j)Kx j .

It follows from the reproducing property 〈Kx j , φ
x
l 〉 = φx

l (x j) that

δi,lλ
x
i = 〈

λx
i φ

x
i , φx

l

〉= 1

m

m∑
j=1

φx
i (x j)φ

x
l (x j), i, l ∈ N, (15)

where δi,l = 1 if i = l and δi,l = 0 otherwise. In particular, when λx
i = 0 (which is the case when i > m), we have φx

i (x j) = 0
for each j ∈ {1, . . . ,m}. Consider the minimization problem (2). Note from the definition of Sz

i that 1
m

∑m
j=1 y jφ

x
i (x j) = λx

i Sz
i .

Apply (15). The empirical error part takes the form

1

m

m∑
i=1

((
m∑

j=1

c jφ
x
j

)
(xi) − yi

)2

=
m∑

p,q=1

cpcq
1

m

m∑
i=1

φx
p(xi)φ

x
q (xi) − 2

m

m∑
i, j=1

yic jφ
x
j (xi) + 1

m

m∑
i=1

y2
i

=
m∑

p,q=1

cpcqδp,qλ
x
p − 2

m∑
i=1

λx
i Sz

i ci + 1

m

m∑
i=1

y2
i =

m∑
i=1

λx
i c2

i − 2
m∑

i=1

λx
i Sz

i ci + 1

m

m∑
i=1

y2
i .

Hence we have an equivalent form of (2) as

cz
γ = arg min

c∈Rm

m∑
i=1

{
λx

i

(
ci − Sz

i

)2 + γ |ci|
}
.

Thus for i ∈ {1, . . . ,m}, when λx
i = 0, we have cz

γ ,i = 0. When λx
i > 0, the component cz

γ ,i can be found by solving the
following optimization problem

cz
γ ,i = arg min

c∈R

{(
c − Sz

i

)2 + γ

λx
i

|c|
}

which has the solution given by (4). This proves the theorem. �
Remark 4. The algorithm can be divided into two parts: computing eigenpairs {(λx

i , φ
x
i )} and solving the minimization prob-

lem (2). So the algorithm can be extended to a semi-supervised learning setting: if other than the labeled data {(xi, yi)}m
i=1,

we have some extra unlabeled data {xi}m′
i=m+1, then we can enhance the learning of the eigenfunctions in the first step by

making full use of all the data {xi}m′
i=1.

4. Preliminary analysis for sparsity

Theorem 1 tells us that cz
γ ,i = 0 whenever 2λx

i |Sz
i | � γ . We shall choose suitable p = p(m) with p(m)

m → 0 and γ

depending on δ such that with confidence 1 − δ,

2λx
∣∣Sz

∣∣� γ , i = p + 1, . . . ,m, (16)
i i
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which would yield the desired sparsity: cz
γ ,i = 0 for i = p + 1, . . . ,m. The preliminary analysis for sparsity is an important

tool for our error analysis.
To achieve the required condition (16), we need to estimate λx

i and Sz
i . The eigenvalue λx

i is easier to deal with, by the
following Hoffman–Wielandt inequality (see [7] for the original inequality for matrices, [8] for the generalization to self-
adjoint operators on Hilbert spaces, [9] for an application to approximation of integral operators, and [1] for more general
discussion).

Lemma 1. We have

∞∑
i=1

(
λi − λx

i

)2 �
∥∥LK − Lx

K

∥∥2
HS,

where ‖ · ‖HS is the Hilbert–Schmidt norm of HS(H K ), the Hilbert space of all Hilbert–Schmidt operators on H K .

Recall that 〈A1, A2〉HS = ∑
j〈A1e j, A2e j〉K for A1, A2 ∈ HS(H K ), where {e j} is an orthonormal basis of H K . The space

HS(H K ) is a subspace of the space of bounded linear operators on H K with norms satisfying ‖A‖H K →H K � ‖A‖HS.
The quantity ‖LK − Lx

K ‖HS has been bounded in the literature [4,9,20,14,22].

Lemma 2. For 0 < δ < 1, we have with confidence 1 − δ,

∥∥LK − Lx
K

∥∥
HS �

4κ2 log 2
δ√

m
. (17)

Bounding the coefficients {Sz
i } towards (16) is more involved. We first show that λx

i Sz
i is close to λx

i 〈 fρ,φx
i 〉, by means

of the following probability inequality in [15] derived from [11,14].

Lemma 3. Let {ξi}m
i=1 be a set of independent random variables with values in a Hilbert space. If ‖ξi‖ � M̃ < ∞ almost surely for each

i = 1, . . . ,m, then for 0 < δ < 1, with confidence 1 − δ we have∥∥∥∥∥ 1

m

m∑
i=1

(ξi − Eξi)

∥∥∥∥∥�
4M̃ log 2

δ√
m

.

Lemma 4. For 0 < δ < 1, with confidence 1 − δ we have(∑
j∈N

(
λx

j

(
Sz

j − 〈
fρ,φx

j

〉))2
)1/2

�
8Mκ log 2

δ√
m

. (18)

Proof. Consider the set of independent random variables {ξi = (yi − fρ(xi))Kxi }m
i=1 with values in the Hilbert space H K .

They satisfy ‖ξi‖ = |yi − fρ(xi)|√K (xi, xi) � 2Mκ and Eξi = 0. So by Lemma 3, we know that for any 0 < δ < 1, with

confidence 1 − δ we have ‖ 1
m

∑m
i=1(yi − fρ(xi))Kxi ‖K � 8Mκ log 2

δ√
m

.

By the definition of Sz
j and the relation λx

jφ
x
j = Lx

K (φx
j ) = 1

m

∑m
i=1 φx

j (xi)Kxi , for each j ∈ N we have

λx
j

(
Sz

j − 〈
fρ,φx

j

〉)= 1

m

m∑
i=1

(
yi − fρ(xi)

)
φx

j (xi) =
〈

1

m

m∑
i=1

(
yi − fρ(xi)

)
Kxi , φ

x
j

〉
.

But {φx
j } j∈N is an orthonormal basis of H K , so we have

∑
j∈N

(
λx

j

(
Sz

j − 〈
fρ,φx

j

〉))2 =
∥∥∥∥∥ 1

m

m∑
i=1

(
yi − fρ(xi)

)
Kxi

∥∥∥∥∥
2

,

and our conclusion follows. �
Next we need to estimate λx

i 〈 fρ,φx
i 〉. Since {φ j} and {φx

i } are orthonormal bases of H K , we observe that

(
LK − Lx

K

)
φx

i =
∞∑〈

φx
i , φ j

〉
LK φ j − λx

i

∞∑〈
φx

i , φ j
〉
φ j =

∞∑〈
φx

i , φ j
〉(

λ j − λx
i

)
φ j.
j=1 j=1 j=1
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Then the definition of the Hilbert–Schmidt norm tells us that∥∥LK − Lx
K

∥∥2
HS =

∞∑
i=1

∥∥(LK − Lx
K

)
φx

i

∥∥2
K =

∞∑
i, j=1

(
λ j − λx

i

)2(〈
φx

i , φ j
〉)2

. (19)

We shall use expression (19) a few times in our analysis for both sparsity and error bounds.

Lemma 5. Let I ⊆ N. If fρ = Lr
K (gρ) for some r > 0 and gρ ∈ H K , then(∑

i∈I

∣∣λx
i

〈
fρ,φx

i

〉∣∣2)1/2

� λr
1‖gρ‖K

∥∥LK − Lx
K

∥∥
HS + 2r‖gρ‖K

(∑
i∈I

(
λx

i

)2(1+r)
)1/2

.

Proof. Write gρ =∑∞
j=1 d jφ j with {d j} ∈ �2 and ‖{d j}‖�2 = ‖gρ‖K . Then fρ =∑∞

j=1 λr
jd jφ j , and for i ∈ I ,

λx
i

〈
fρ,φx

i

〉= λx
i

∞∑
j=1

λr
jd j

〈
φ j, φ

x
i

〉= λx
i

∑
j: λ j>2λx

i

λr
jd j

〈
φ j, φ

x
i

〉+ λx
i

∑
j: λ j�2λx

i

λr
jd j

〈
φ j, φ

x
i

〉
.

When λ j > 2λx
i , we have λx

i � λ j − λx
i . Hence by the Schwarz inequality,∣∣∣∣λx

i

∑
j: λ j>2λx

i

λr
jd j

〈
φ j, φ

x
i

〉∣∣∣∣� λr
1

∥∥{dl}
∥∥

�2

( ∑
j: λ j>2λx

i

(
λ j − λx

i

)2(〈
φ j, φ

x
i

〉)2
)1/2

.

It follows from (19) that(∑
i∈I

∣∣λx
i

〈
fρ,φx

i

〉∣∣2)1/2

� λr
1

∥∥{d j}
∥∥

�2

∥∥LK − Lx
K

∥∥
HS + 2r

∥∥{d j}
∥∥

�2

(∑
i∈I

(
λx

i

)2(1+r)
)1/2

.

The proof is completed. �
Now we can present our preliminary analysis for sparsity of algorithm (2). The �1-regularizer plays a key role to produce

sparse approximations. The phenomenon that the �1-regularizer can be used to reproduce sparsity has been observed
in LASSO [19] and compressed sensing [3,6], usually under the assumption that the approximated function has a sparse
representation with respect to some basis or redundant system. Here we show that sparsity of f z

γ in representation (3)
can be produced under assumption (1) which does not impose any sparse representation and is a common mild condition
in learning theory (e.g. [4,14,10]). The choice of the empirical features {φx

i }m
i=1 is important to ensure the sparsity and

convergence rates for the algorithm.

Theorem 5. Under the same condition as in Theorem 4, with confidence 1 − δ we have

cz
γ ,i = 0, ∀i = p + 1, . . . ,m.

Proof. By Lemmas 2 and 4, we know that for any 0 < δ < 1
2 there exists a subset Zδ of Zm of measure at least 1 − 2δ such

that both (17) and (18) hold for each z ∈ Zδ .
Let i ∈ {1, . . . ,m} and z ∈ Zδ . Then from (18), we see that

2λx
i

∣∣Sz
i

∣∣� 2λx
i

∣∣〈 fρ,φx
i

〉∣∣+ 2λx
i

∣∣Sz
i − 〈

fρ,φx
i

〉∣∣� 2λx
i

∣∣〈 fρ,φx
i

〉∣∣+ 16Mκ log 2
δ√

m
.

Applying Lemma 5 to I = {i}, we have

2λx
i

∣∣Sz
i

∣∣� λr
1‖gρ‖K

8κ2 log 2
δ√

m
+ 21+r‖gρ‖K

(
λx

i

)1+r + 16Mκ log 2
δ√

m
. (20)

By Lemma 1, |λx
i − λi | � ‖LK − Lx

K ‖HS, so (λx
i )

1+r � (λi + ‖LK − Lx
K ‖HS)

1+r � 2r(λ1+r
i + ‖LK − Lx

K ‖1+r
HS ). It follows that for

i = 1, . . . ,m, the right-hand side of (20) has an upper bound

21+2r‖gρ‖K λ1+r
i + C K ,ρ

(log 2
δ
)1+r

√
m

.

Therefore, when

21+2r‖gρ‖K λ1+r
p + C K ,ρ

(log 2
δ
)1+r

√ � γ , (21)

m
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we know that

2λx
i

∣∣Sz
i

∣∣� γ , ∀i = p + 1, . . . ,m,

which by Theorem 1 yields cz
γ ,i = 0 for i = p + 1, . . . ,m. Then the conclusion of Theorem 5 follows by scaling 2δ to δ, for

which (21) corresponds to (13). �
From Theorem 5 we see immediately that when the eigenvalues {λi} decay polynomially, the sparsity can be explicitly

derived by taking p to be �m
1

2α(1+r) �, the smallest integer greater than or equal to m
1

2α(1+r) .

Corollary 1. Assume (1). If for some D2 > 0 and α > 0, λi � D2i−α holds for each i, then when γ � (21+2r D1+r
2 ‖gρ‖K +

C K ,ρ(log 4
δ
)1+r)/

√
m, we have with confidence 1 − δ,

cz
γ ,i = 0, ∀m

1
2α(1+r) + 1 � i � m.

5. Error analysis

In this section, we prove our error bounds stated in Theorem 4.

Proof of Theorem 4. We follow the proof of Theorem 5 and know that for any 0 < δ < 1
2 there exists a subset Zδ of Zm of

measure at least 1 − 2δ such that both (17) and (18) hold for each z ∈ Zδ . Moreover, when (21) is satisfied and z ∈ Zδ , we
have cz

γ ,i = 0 for every i ∈ {p + 1, . . . ,m} and those i ∈ {1, . . . , p} with λx
i � λp

2 , which follows directly from (20). Hence

f z
γ =

∑
i∈S

cz
γ ,iφ

x
i ,

where S is defined by S = {i ∈ {1, . . . , p}: λx
i >

λp
2 }. It follows from the orthogonal expansion in terms of the orthonormal

basis {φx
i } that∥∥ f z
γ − fρ

∥∥2
K =

∑
i∈N\S

(〈
fρ,φx

i

〉)2 +
∑
i∈S

(〈
fρ,φx

i

〉− cz
γ ,i

)2 =: 
1 + 
2. (22)

Let z ∈ Zδ in the following proof.
We bound the first term 
1 on the right-hand side of (22) by decomposing it further into two parts with fρ =∑∞

j=1 λr
jd jφ j =∑∞

j=p+1 λr
jd jφ j +∑p

j=1 λr
jd jφ j . Here we have written gρ =∑∞

j=1 d jφ j with {d j} ∈ �2 and ‖{d j}‖�2 = ‖gρ‖K .

The part with
∑∞

j=p+1 is easy to deal with: since {φx
i } is an orthonormal basis, we have( ∞∑

i=1

〈 ∞∑
j=p+1

λr
jd jφ j, φ

x
i

〉2)1/2

=
∥∥∥∥∥

∞∑
j=p+1

λr
jd jφ j

∥∥∥∥∥
K

� ‖gρ‖K λr
p+1. (23)

The part with
∑p

j=1 can be estimated by the Schwarz inequality as( ∑
i∈N\S

〈 p∑
j=1

λr
jd jφ j, φ

x
i

〉2)1/2

�
( ∑

i∈N\S

∥∥{dl}
∥∥2

�2

p∑
j=1

λ2r
j

〈
φ j, φ

x
i

〉2)1/2

.

We continue to bound
∑

i∈N\S
∑p

j=1 λ2r
j 〈φ j, φ

x
i 〉2 in two cases.

Case 1: r � 1. For i � p + 1, we observe that λ2r
j � 22r−1(λ2r

i + (λ j − λi)
2r) and

(λ j − λi)
2r � λ2r−2

1 (λ j − λi)
2 � 2λ2r−2

1

(∣∣λ j − λx
i

∣∣2 + ∣∣λi − λx
i

∣∣2).
It follows that

p∑
j=1

λ2r
j

〈
φ j, φ

x
i

〉2 � 22r−1
p∑

j=1

(
λ2r

i + 2λ2r−2
1

∣∣λi − λx
i

∣∣2 + 2λ2r−2
1

∣∣λ j − λx
i

∣∣2)〈φ j, φ
x
i

〉2
,

which in connection with Lemma 1 and (19) yields
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∞∑
i=p+1

p∑
j=1

λ2r
j

〈
φ j, φ

x
i

〉2 � 22r−1
∞∑

i=p+1

λ2r
i + 22rλ2r−2

1

( ∞∑
i=1

∣∣λi − λx
i

∣∣2 +
∞∑

i, j=1

∣∣λ j − λx
i

∣∣2〈φ j, φ
x
i

〉2)

� 22r−1
∞∑

i=p+1

λ2r
i + 21+2rλ2r−2

1

∥∥LK − Lx
K

∥∥2
HS.

For i ∈ {1, . . . , p} \ S and j � p, we have |λ j − λx
i | � λ j

2 and hence λ2r
j � 4λ2r−2

1 |λ j − λx
i |2. So by (19),

∑
i∈{1,...,p}\S

p∑
j=1

λ2r
j

〈
φ j, φ

x
i

〉2 � 4λ2r−2
1

∞∑
i, j=1

∣∣λ j − λx
i

∣∣2〈φ j, φ
x
i

〉2 � 4λ2r−2
1

∥∥LK − Lx
K

∥∥2
HS.

Thus in the first case we have∑
i∈N\S

p∑
j=1

λ2r
j

〈
φ j, φ

x
i

〉2 � 22r−1
∞∑

i=p+1

λ2r
i + 4λ2r−2

1

(
22r−1 + 1

)∥∥LK − Lx
K

∥∥2
HS.

Case 2: r < 1. we notice that λ2r
j � λ2r−2

p λ2
j and obtain from the above estimate

∑
i∈N\S

p∑
j=1

λ2r
j

〈
φ j, φ

x
i

〉2 � 2λ2r−2
p

∞∑
i=p+1

λ2
i + 12λ2r−2

p

∥∥LK − Lx
K

∥∥2
HS.

The bounds for the two cases together with (23) give a bound for 
1 as

√

1 �

⎧⎨⎩ ‖gρ‖K λr
p+1 + 2r

∥∥{d j}
∥∥

�2

((∑∞
i=p+1 λ2r

i

)1/2 + 21+rλr−1
1

∥∥LK − Lx
K

∥∥
HS

)
, if r � 1,

‖gρ‖K λr
p+1 + 2

∥∥{d j}
∥∥

�2λ
r−1
p

((∑∞
i=p+1 λ2

i

)1/2 + 2
∥∥LK − Lx

K

∥∥
HS

)
, if r < 1.

Now we turn to the second term 
2 on the right-hand side of (22). Observe that the case cz
γ ,i = 0 corresponds to

|Sz
i | � γ

2λx
i

. So for either cz
γ ,i = 0 or cz

γ ,i = Sz
i ± γ

2λx
i

, we always have

∣∣〈 fρ,φx
i

〉− cz
γ ,i

∣∣� γ

2λx
i

+ ∣∣Sz
i − 〈

fρ,φx
i

〉∣∣� 1

2λx
i

(
γ + 2λx

i

∣∣〈 fρ,φx
i

〉− Sz
i

∣∣).
But for each i ∈ S , there holds 2λx

i � λp . Hence

√

2 =

(∑
i∈S

(〈
fρ,φx

i

〉− cz
γ ,i

)2
)1/2

�
√

2pγ

λp
+ 2

√
2

λp

(∑
i∈S

(
λx

i

(
Sz

i − 〈
fρ,φx

i

〉))2
)1/2

.

By Lemma 4, this implies√

2 �

√
2pγ

λp
+ 16

√
2Mκ log 2

δ

λp
√

m
.

Putting the bounds for 
1 and 
2 into (22), we know that for z ∈ Zδ , ‖ f z
γ − fρ‖K is bounded by

‖gρ‖K λr
p +

√
2pγ

λp
+ 16

√
2Mκ log 2

δ

λp
√

m
+
⎧⎨⎩ 2r‖gρ‖K

((∑∞
i=p+1 λ2r

i

)1/2 + 23+rλr−1
1 κ2 log 2

δ√
m

)
, if r � 1,

2‖gρ‖K λr−1
p

((∑∞
i=p+1 λ2

i

)1/2 + 8κ2 log 2
δ√

m

)
, if r < 1.

Then the conclusion of Theorem 4 follows by scaling 2δ to δ. �
6. Achieving both sparsity and learning rates

We are in a position to derive both sparsity and learning rates in two special situations, based on our general analysis.

Proof of Theorem 2. We take p = �m1/(2α2(1+r))� to give m1/(2α2(1+r)) � p � 2m1/(2α2(1+r)) , so λ1+r
p � D1+r

2 /
√

m. Thus the
choice of γ in (7) implies condition (13) of Theorem 5. This verifies (8) as well as the condition of Theorem 4. We bound
the first three terms of the right-hand side of (14) in Theorem 4 as follows. First,
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‖gρ‖K λr
p +

√
2pγ

λp
+ C3

λp
√

m
log

4

δ
� ‖gρ‖K Dr

2m
− α2r

2α2(1+r) + 2D−1
1 2α1γ m

( 1
2 +α1) 1

2α2(1+r)

+ C3 D−1
1 2α1

(
log

4

δ

)
m

− 1
2 + α1

2α2(1+r) � C̃1

(
log

4

δ

)1+r

m
− 2α2r−1−(α1−α2)

4α2(1+r) ,

where C̃1 = ‖gρ‖K Dr
2 + 21+α1 D−1

1 (21+r‖gρ‖K D1+r
2 + C K ,ρ) + C3 D−1

1 2α1 .
When r � 1, since 2rα2 > 1,

∞∑
i=p+1

λ
max{2r,2}
i � D2r

2

∞∫
p

x−2rα2 dx = D2r
2 p1−2rα2

2rα2 − 1
.

So the last term of the right-hand side of (14) can be bounded as

C4λ
min{r−1,0}
p

( ∞∑
i=p+1

λ
max{2r,2}
i

)1/2

�
C4 Dr

2√
2rα2 − 1

m
1−2rα2

4α2(1+r) .

Similarly, when 0 < r < 1, since α2 > 1
2 + (1 − r)α1, we have

C4λ
min{r−1,0}
p

( ∞∑
i=p+1

λ
max{2r,2}
i

)1/2

�
C4 Dr−1

1 p−α1(r−1)D2 p(1−2α2)/2

√
2α2 − 1

�
C4 Dr−1

1 D2√
2α2 − 1

m
1+2(1−r)α1−2α2

4α2(1+r) .

Now we use Theorem 4 to obtain∥∥ fρ − f z
γ

∥∥
K � C1

(
log

4

δ

)1+r

m
− 2α2r−1−2(α1−α2)

4α2(1+r)

with confidence 1 − δ, where

C1 = C̃1 +
⎧⎨⎩

C4 Dr
2√

2rα2−1
, when r � 1,

C4 Dr−1
1 D2√

2α2−1
, when 0 < r < 1.

The proof of Theorem 2 is complete. �
Proof of Theorem 3. Choosing p = � log(m+1)

2(1+r) logβ2
�, we have

log(m + 1)

2(1 + r) log β2
� p � 1 + log(m + 1)

2(1 + r) log β2
.

It follows that

m
1

2(1+r) � β
p
2 � β

p
1 � β1(2m)

logβ1
2(1+r) logβ2 .

The assumption λp � D2β
−p
2 in (10) tells us that

λ1+r
p �

D1+r
2√
m

.

Then

21+2r‖gρ‖K λ1+r
p + C K ,ρ

(log 4
δ
)1+r

√
m

� 21+2r‖gρ‖K
D1+r

2√
m

+ C K ,ρ
(log 4

δ
)1+r

√
m

= γ .

So condition (13) in Theorem 5 holds, and thus we know that with confidence 1 − δ, cz
γ ,i = 0 for p + 1 � i � m. This verifies

the desired conclusion (11) for sparsity.
Now we turn to the error analysis. By Theorem 4, bound (14) holds with confidence 1 − δ. We estimate the first three

terms of the right-hand side of (14) as

‖gρ‖K λr
p +

√
2pγ

λp
+ C3

log 4
δ

λp
√

m
� ‖gρ‖K Dr

2m− r
2(1+r) + C̃2

(
log

4

δ

)1+r√
log(m + 1)m−

r−(log
β1
β2

/ log β2)

2(1+r)

+ C3 D−1
1

(
log

4
)

β12
logβ1

2(1+r) logβ2 m−
r−(log

β1
β2

/ logβ2)

2(1+r) , (24)

δ
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Table 1
Parameters.

i Coefficient Ai Variation v2
i Center Pi

1 2.0 0.622 (0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

2 −3.5 0.642 (0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6)

3 0.7 0.652 1
9 (0.9,1.7,2.5,3.3,4.1,4.9,5.7,6.5,7.3,8.1)

where C̃2 = ( 2
log 2 + 1

(1+r) logβ2
)1/2(21+2r‖gρ‖K D1+r

2 + C K ,ρ)D−1
1 β12

logβ1
2(1+r) log β2 .

When r � 1, the last term on the right-hand side of (14) can be bounded as

C4

( ∞∑
i=p+1

λ2r
i

)1/2

� C4 Dr
2

( ∞∑
i=p+1

β−2ri
2

)1/2

= C4 Dr
2β

−pr
2√

β2r
2 − 1

�
C4 Dr

2√
β2r

2 − 1
m− r

2(1+r) . (25)

Similarly, when 0 < r < 1, we have

C4λ
r−1
p

( ∞∑
i=p+1

λ2
i

)1/2

� C4 Dr−1
1 β1−r

1 (2m)
(1−r) logβ1

2(1+r) logβ2
D2m− 1

2(1+r)√
β2

2 − 1
.

Putting this estimate in the case 0 < r < 1 and (25) in the case r � 1 and (24) into bound (14) tells us that with confidence
1 − δ, the desired bound (12) for the error holds true with the constant C2 given by

C2 = 1√
log 2

(
‖gρ‖K Dr

2 + C3 D−1
1 β12

logβ1
2(1+r) logβ2

)
+ C̃2 + 1√

log 2

⎧⎪⎪⎨⎪⎪⎩
C4 Dr

2√
β2r

2 −1
, when r � 1,

C4 Dr−1
1 β1−r

1 D2√
β2

2 −1
2

(1−r) logβ1
2(1+r) logβ2 , when 0 < r < 1.

The proof of Theorem 3 is complete. �
7. Further remarks and discussion

We have proposed a modified KPM (2) for regression with �1-regularizer. Analysis for the error in the H K -metric has
been conducted by means of a priori condition (1) concerning the regularity of the regression with respect to the kernel
K and the marginal distribution ρX . Our learning rates have been given in terms of special choices of the regularization
parameter γ > 0 which depends on a priori condition (1). Condition (1) is a standard assumption for least square regularized
regression with an infinitely dimensional H K in the literature of learning theory [4,14,16,18] and almost all theoretical
error bounds are based on similar a priori conditions. To the best of our knowledge, the only theoretical error analysis for
a learning algorithm with a regularization parameter determined directly by the data was given recently in [5], where a
cross-validation approach was rigorously proved.

It is a common practice to choose the regularization parameter by a cross-validation method, which often leads to sat-
isfactory simulation. Here we present an example to show how to choose the regularization parameter γ for algorithm (2).
Rigorous theoretical analysis for such a process will be considered in our further study.

Example 2. We generate the regression function fρ on R
10 as

fρ(x) =
3∑

i=1

Ai exp

(
−|x − Pi|2

2v2
i

)
, (26)

where the parameters are prescribed in Table 1. The data set {(xi, yi)}m
i is drawn independently with xi ’s uniformly dis-

tributed on [0,1]10, yi = fρ(xi) + εi , and εi ’s being Gaussian noise with μ = 0, σ 2 = 0.52 and truncated onto [−1.5,1.5].
The Mercer kernel K is the Gaussian with variance 0.602. Table 2 shows the result of the simulation. For comparison, in the
last three columns we list the error performance of the least squares regularized regression (LSR) algorithm

f z
LSR,γ1

= arg min
f ∈H K

{
1

m

m∑
i=1

(
f (xi) − yi

)2 + γ1‖ f ‖2
K

}
.

The notations γ ∗ and γ ∗
1 in the second and sixth columns denote the optimal γ and γ1 respectively, which are selected

from a geometric sequence {10−4, . . . ,10−2} of length 60 by 5-fold cross-validation. The learning error is estimated empir-
ically by independently drawing another unlabeled sample set {ξ j} uniformly on [0,1]10 of size 12,000 and with f z = f z

γ ∗
or f z ∗ computing
LSR,γ1
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Table 2
Learning error.

m γ ∗ ‖cz
γ ∗ ‖0 Error 1 Error 2 γ ∗

1 LSR Error 1 LSR Error 2

300 6.261e−3 16 9.708e−2 1.244e−1 6.769e−3 0.3936 0.4951
600 6.769e−3 13 8.472e−2 1.077e−1 5.790e−3 0.3986 0.5042

1200 3.625e−3 16 6.569e−2 9.000e−2 4.582e−3 0.5229 0.6534
1800 2.270e−3 25 5.054e−2 6.467e−2 3.101e−3 0.5500 0.6945
2400 2.099e−3 20 4.289e−2 6.249e−2 2.653e−3 0.5246 0.6764

Error 1 = 1

12,000

12,000∑
j=1

∣∣ fρ(ξ j) − f z(ξ j)
∣∣,

Error 2 =
(

1

12,000

12,000∑
j=1

(
fρ(ξ j) − f z(ξ j)

)2

)1/2

.

We have observed sparsity for the coefficients in the representation (3) of the output function in our algorithm. This
sparsity is different from that for the representation in terms of {Kxi }m

i=1. It would be interesting to extend our study to a
semi-supervised learning setting as indicated in Remark 4. Another extension is to take empirical features in different ways
by means of efficient numerical methods for the Gramian matrix K. Exploring sparsity in such extended settings would be
of much value for applications.
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