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1. Introduction

We propose a learning algorithm for regression. It is a modification of the kernel projection machine (KPM) introduced
by Blanchard et al. [2] and analyzed by Zwald [23]. The main advantage of this algorithm is its strong learning ability while
producing sparse approximations in a very general setting in learning theory, without any hypothesis on sparse representa-
tions.

In the regression setting, an input space X is a compact metric space and the output space Y =R.Let Z=X x Y and p
be a Borel probability measure on Z with px the marginal measure on X, and p(:|x) the conditional measure at x € X. The
regression function f, is defined as

fp(X)Z/ydp(ylx), xeX.

Y

Our learning algorithm produces approximations of f, in a reproducing kernel Hilbert space (RKHS). A symmetric contin-

uous function K: X x X — R is called a Mercer kernel if for any finite subset {xi}i.=1 of X, the | x | matrix (K(x,',xj))i.J=1

is positive semi-definite. For x € X, we denote Ky = K(-,x). The RKHS associated with the Mercer kernel K is a Hilbert
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space Hyi completed by the span of {Ky: x € X} under the norm || - | induced by the inner product {-,-) = (-,-)x satisfying
(Ky, Ky) = K(x, u). We define an integral operator Ly on Hy by

Le(f) = / Kef 0 dpx (). f € Hx.
X

In this paper, we take a general setting in learning theory satisfying
fp=L%(gp) forsomer>0andg, € Hg. (1)

Since Lk is a compact, self-adjoint positive operator, we can arrange its eigenvalues {A;} (with multiplicity) as a nonin-
creasing sequence tending to 0 and take an associated sequence of eigenfunctions {¢;} to be an orthonormal basis of H.
Then the power L}, of Ly can be written by Li (3~; ci¢i) =) _;ciA{¢; and assumption (1) is equivalent to f, =} ;diA[¢;
where {d;} € £* represents gp as gp = ;digi. The exponent r in (1) measures the decay of the coefficients {d;A[} of f,
with respect to the orthonormal basis {¢;} of Hk. It can be regarded as a measurement for the regularity of the regression
function fp.

The eigenfunctions {¢;} can be used to understand feature maps in learning theory. They can be approximated by em-
pirical features {¢}} which are eigenfunctions of an empirical operator L} associated with a sample x € X™. Throughout this
paper we assume that z = {(x;, y;)}I*.; is a sample drawn 1ndependently from p. We use X to denote the unlabeled part of
the data x={x1,...,Xn}. The emplncal operator L} on Hy is defined by

1 1w
(N == FoKe=—> (f Kq)Kx, feHx,
i=1 i=1

where we have used the reproducing property of the RKHS that asserts (f, Kx) = f(x) for any f € Hk and x € X. So L}
is a normalized sum of m rank-one operators and it is self-adjoint, positive with rank at most m. Therefore we can write
the eigensystem of L} as {(A}, ¢})};, with eigenvalues A} arranged in nonincreasing order and A¥ =0 when i > m, and the
corresponding eigenfunctions {¢x}°i1 to form an orthonormal basis of Hy. The first m elgenfunctlons {¢¥}, can be used
as empirical features for learning by regularization schemes in a data dependent hypothesis space span{¢}}[,. The data
dependence nature is reflected by the empirical features {¢}}[", obtained from the data x. This idea was used in [2] to
introduce the KPM outputting Y " ; . 2 ;@7 where the coefficient vector c (cy 1reees cf,‘m) is given with a regularization
parameter y > 0 by

cy—arggﬂlgg! ZV<ZCJ¢,(X) YI>+V||C||O}
i=1

Here V :R? — R, is a loss function and |/c||g is the number of nonzero entries of the vector ¢ = (cy, ..., ¢y) € R™. The
KPM was analyzed in [23] for classification with V (f, y) = max{1 — yf, 0} and for regression with V(f,y)=(f —y)? in a
Gaussian white noise model.

In this paper we modify the KPM in the least square regression setting by using the ¢!-regularizer |c|j; = Z}"zl cil
instead of the ¢°-penalty. Our learning algorithm now takes the form

2
cy—argcmﬂlgpn: Z((Zcm )(xz J’i> +V|ICII1], (2)

i=1

and the output function is

£y =2t ®

We use fZ to approximate the regression function f, in Hg.
The following Theorem 1, to be proved in Section 3, represents the solution to problem (2) explicitly, and thus shows
computational efficiency of our algorithm.

Theorem 1. For i € N, denote
1 m .
sz _ mx 2 j=1Yi# %)), fAY >0,
! 0, otherwise.

Then the solution to problem (2) is given withi=1, ..., m by
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0, if 22X|5%| <
& i=15- % if21Y|SF| > yand St> 3% )
ST+ gk F2AYISH > yand S} < — k.

In particular, c =0ifA¥=0.

Remark 1. Let us show how the eigenpairs {(A}, ¢¥)} can be found exp11c1t1y Let d* < m be the rank of the Gramian matrix
K:= (K(x,-,xj))}“j=1 Denote its eigenvalues as A" - > )‘d" > xdx =...= )»" =0, and associated eigenvectors {/i;}"; to
form an orthonormal basis of R™. We have

1 & . .
; HI and ¢f = - Z(m)ijj, fori=1,...,d%, (5)

A¥=0, and ¢¥x=0, fori=d*+1,....m

1

In fact, for i =1,...,d%, we see that
2( m
(Z(m,m]) = ZZ(MJ]K(XI XKy = oL Y (LK,
m3 j=1 I=1

and || 0L, () Ky I% = @] K = 3X > 0.

For i=d*+1,...,m, A¥ > 0 would imply ¢} = 1 x Lk (6F) = mx Z] 187 (x))Kx; and K(¢f|x) = mAfe¥|x where ¢f|x =
(¢>"(xj))’j” 1 is the vector obtained by restricting the functlon o onto the sampling points. It would then yield ¢¥|x =0 and
¢¥ =0, a contradiction. So we must have A¥ = 0. It follows that (L} (¢}), #¥) =0, which means Z] 1 PF(xPX(xj) =
and ¢X|x =0. In this case, ¢¥ is perpendlcular to span{Ky,}™ ;.

Note that for i =d* 4+ 1,...,m, AX¥ =0 implies c;.i =0. So (Z'j":1 ch')}‘)(x,) = (Z?; chb}‘)(xi) and optimization prob-
lem (2 )1sthesameasc ,_Oforl_d"—f—l .,m, and

ceRd*

m ax 2
x 1
(¢}, i)y = arg min {E Z((Zcmﬁ) (X)) — yi> + el }
j=1

We shall conduct analysis for the error fjf — fp in the H-metric (stronger than the Lf)x -metric, as shown in [14]) and
derive learning rate for algorithm (2). Note that learning rates with the metric in Hy yield those with the metric in C*(X)
when K is C?* with X c R". See [21].

Let us illustrate our analysis by the following examples when the eigenvalues {);} have some special asymptotic behav-
iors. Throughout the paper we assume that |y| < M almost surely for some constant M > 0. Denote x = supycx v/ K(x, X).

% <y <ar<(1+nay — % and 0 < D1, D3, the eigenvalues {);} decay polynomially as

Theorem 2. Assume (1) and for some
Dq1i™¥ g Ai < Doi~ %2 Vi, (6)

Let 0 < 8 < 1. If we choose

1+r
4

y = (21+2rD}”||gpllz< +Ck.p <log g) )/«/ﬁ (7)

then we have with confidence 1 — § that
1

CJZ”- =0, VmZ@ 4 1Li<m, (8)

and
4 1+r  20pr—1-2(a; —ay)
17 = folle < 1108 ) m ©)

where Ck , = 82 gl + 242"y + 16Mk and Cy is a constant independent of § or m (which will be specified in the proof).
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Remark 2. Asymptotic behavior (6) for the eigenvalues {};} of the integral operator is typical for Sobolev smooth kernels
on domains in Euclidean spaces, and the power indices «; and «; depend on the smoothness of the kernel [12]. When the

kernel is smooth enough, o, can be arbitrarily large and learning rate (9) takes the form m€~ 2 with an arbitrarily small
€ > 0. When r is large enough, it behaves like m€=37 with an arbitrarily small € > 0.

1
Observe from (8) that the number of nonzero coefficients in the representation f} = >, c; ;@F is at most m 2%+
which can be much smaller than the sample size m when «;, and r are large.

Theorem 3. Assume (1) and for some 1 < B2 < B < ﬂz”r and 0 < D1, Dy, the eigenvalues {;} decay exponentially as

D1y <A< Dyfy’, Vi (10)

Let 0 < § < 1 and choose

4 1+r
y= (21+2rD5+r||gp||K—l—CK,p(log 3) >/ﬂ
then we have with confidence 1 — § that

1 1
¢, =0, v B
2(1+4r)log B2

E

(11)

and

r—(og 1 /1og )

1+r
4 I Yk
||f)f—fp||1<<cz(logg> Viog(m + ym™— 7dm (12)
where C; is a constant independent of § or m (which will be specified in the proof).

Remark 3. Asymptotic behavior (10) for the eigenvalues {A;} of the integral operator is typical for analytic kernels on
domains in Euclidean spaces [13]. When r is large enough (meaning that f, has high regularity), learning rate (12) behaves

1
like m€~2 with an arbitrarily small € > 0.
Again we observe from (11) that the number of nonzero coefficients in the representation f; =", c; ;@F is at most

log(m+1)
2(1+4r) log B2

which is much smaller than the sample size m.
Theorems 2 and 3 will be proved in Section 6.
2. General analysis
Our general analysis for algorithm (2) is the following theorem to be proved in Section 5.

Theorem 4. Assume (1). Let p € {1, ...,m} and 0 < § < 1. Choose y to satisfy

(log %)]-H”

2" g llkay T+ Cip <7 (13)
then with confidence 1 — § we have
1/2
V2py  C3log} minfr—1.0) [ o= . max(2r.2)
155 = Sollic < Ngplliny + 5= + T 4+ Cat > : (14)
4 p i=p+1

where C3 = 168/2Mxk + 23+maX2r 1| g 11 2T k2 and C4 = 2™ 1 g || .

Let us give a concrete example with Hg being the Sobolev space H’(X) of integer index s > % and X being the unit ball

X ={xeR" |x|] <1} of R". When py is the normalized Lebesgue measure on X, a classical result in the theory of function
spaces (see e.g. [17]) asserts that condition (6) for the eigenvalues {A;} holds with a1 =y = 2. Also, if f, € HZ+Ds(X)
for some r > E—S, we know that condition (1) holds true. Then the following learning rate can be derived from Theorem 4,
as in the proof of Theorem 2.
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Example 1. Let X = {x € R": |x| < 1} and px be the normalized Lebesgue measure on X. If K is the reproducing kernel of the
Sobolev space H¥(X) of integer index s > 4 and f, € H#+D5(X) for some r > i, then by taking y = C; 5, (log H+r)ym,
we have with confidence 1 — 4,

4sr—n

4 1+r
15~ folle < i (10g5)  moiE,
where Cs g, and C} are constants independent of § or m.

3. Explicit formula for the coefficients

In this section we prove the representer theorem for algorithm (2). The ¢'-regularizer is important in the process. The
proof is an immediate consequence of the classical result on soft-thresholding in the context of orthogonal regressors [19],
once the orthogonality of {¢}} on the data is derived (see (15) below). We give the proof here for completeness.

Proof of Theorem 1. Let i € N. Since (A}, ¢¥) is an eigenpair of L}, we have

AXgX =% Z¢> *))Kx;-

] 1

It follows from the reproducing property (Kx;, ¢) = ¢[(x;) that

Siay = (rek, of) = Z«p x)f(x;), i,leN, (15)

] 1

where §;; =1 if i =1 and §;; = 0 otherwise. In particular, when A?‘ =0 (which is the case when i > m), we have ¢l?‘(xj) =0
for each j € {1,...,m}. Consider the minimization problem (2). Note from the definition of S? that % ZT:1 Vidr(xj) = AXSE.
Apply (15). The empirical error part takes the form

1 m m m
52((2‘:1‘75}‘)("") —y;) Z cpCq- Z%(xz)qbq(xz Z yici¢fxi) + — Zy?
i=1 j=1 p.q=1 1 ,j=1 i=1
m m 1 1 m
= D CpCadpahy —2)  MStei+ m Zylz = Zkf i _22)‘?5‘%" T 2Vt
p.qg=1 i=1 i=1 i=1 i=1 i=1
Hence we have an equivalent form of (2) as
= 2
& =arg mﬂlgrr}1 (A (ci = SH)” + ylail}
i=1

Thus for i € {1,...,m}, when A¥ =0, we have c; ; =0. When ¥ > 0, the component c;.i can be found by solving the
following optimization problem

z : _cz
cyyi_argnqelﬂg{(c Si) k"'c'}
which has the solution given by (4). This proves the theorem. O

Remark 4. The algorithm can be divided into two parts: computing eigenpairs {(A}, #7)} and solving the minimization prob-
lem (2). So the algorithm can be extended to a semi-supervised learning setting: if other than the labeled data {(x;, y;)}% .

we have some extra unlabeled data {x;}" then we can enhance the learning of the eigenfunctions in the first step by

i= m+1'
making full use of all the data {x,-}i:1
4. Preliminary analysis for sparsity
Theorem 1 tells us that c = 0 whenever 2)\§‘|Siz| < y. We shall choose suitable p = p(m) with % — 0 and y

depending on § such that w1th conﬁdence 1-6,
20X[SH <y, i=p+1,....m, (16)
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which would yield the desired sparsity: c;,i =0fori=p+1,...,m. The preliminary analysis for sparsity is an important
tool for our error analysis.

To achieve the required condition (16), we need to estimate Y and S?7. The eigenvalue AY is easier to deal with, by the
following Hoffman-Wielandt inequality (see [7] for the original inequality for matrices, [8] for the generalization to self-
adjoint operators on Hilbert spaces, [9] for an application to approximation of integral operators, and [1] for more general
discussion).

Lemma 1. We have

o0

> (i =07 < Lk — L] e

i=1
where || - ||us is the Hilbert-Schmidt norm of HS(H ), the Hilbert space of all Hilbert-Schmidt operators on H.
Recall that (A1, A)us = Z]-(Alej, Azej)k for Ay, Ay € HS(Hk), where {e;} is an orthonormal basis of H. The space

HS(Hk) is a subspace of the space of bounded linear operators on Hy with norms satisfying ||All3¢, -, < l|Allus.
The quantity ||Lx — L% |lus has been bounded in the literature [4,9,20,14,22].

Lemma 2. For 0 < § < 1, we have with confidence 1 — 6,
. 4k? log 2
”LK—LK”HS\ Jm

Bounding the coefficients {S?} towards (16) is more involved. We first show that A¥S? is close to AX(f,, ¢¥), by means
of the following probability mequallty in [15] derived from [11,14].

(17)

Lemma 3. Let {&;}" ; be a set of independent random variables with values in a Hilbert space. If ||&; || < M < oo almost surely for each
i=1,...,m,then for 0 <§ < 1, with confidence 1 — § we have

am log 2
H Z(& E&)| < T‘S
Lemma 4. For 0 < § < 1, with confidence 1 — § we have
172 8Mk log 2
2 K108 5
(Cexs-tmo?) < 22t (8)

jeN

Proof. Consider the set of independent random variables {& = (y; — fp(x,-))lgq}m1 with values in the Hilbert space Hg.

They satisfy ||&]l = |yi — fp )|~/ K(Xi,x;) < 2Mk and E& = 0. So by Lemma 3, we know that for any 0 < § < 1, with
8Mx log 2

confidence 1— & we have |1 S (yi — f, (xi) Ky, llx < f/n_:gs.

By the definition of S? and the relation )»’jd)}‘ =L% (d)}‘) = % >, q}}‘(xi)KXI., for each j € N we have

m

1 1 &
W(S% = (fp. 8F) = = > (yi— fox)) gl = <E > (i — Fox) K. ¢}‘>
i=1

i=1

But {¢}‘}jeN is an orthonormal basis of Hg, so we have

)

S35 1 10 = Ll S

jeN

and our conclusion follows. O

Next we need to estimate A¥(f,, ¢}). Since {¢;} and {¢}} are orthonormal bases of H, we observe that

o0 o0 o0

(Lk = LX)oF =D (07, di)Lxpj — AF D _(0F dj)di = Y (85, ¢5)(hj — 27)8;.

j=1 j=1 j=1
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Then the definition of the Hilbert-Schmidt norm tells us that

o0

|Lk — L2 = ZH — )= D (1 — 1) (08 01)”. (19)

i,j=1

We shall use expression (19) a few times in our analysis for both sparsity and error bounds.

Lemma 5. Let | S N.If f, = L} (gp) for somer > 0 and g, € H, then

12
(ZP‘X fps 07) ) <A lgplik | Lk —L’,‘<||HS+2r||gp||K<Z()L§‘)2(”r)>

iel iel

1/2

Proof. Write g, = Z?‘; dj¢; with {d;} € ¢? and ||{d;j}l|,2 = llgp k. Then f, = Z?‘; Agdjxpj, and foriel,
o
M(for 8F) =M Y M5dilog o) =21 D0 Wdilei df)+ AT 3. Adilgs. )
j=1 j: )\.j>2).?( jt )\JSZ)@‘
When 2; > 2%, we have A} < Aj — A¥. Hence by the Schwarz inequality,

1/2
w8 e <alala( X 6-20000°)

j: }»j>2)uf Jj: }\j>2)u¥

It follows from (19) that

1/2 1/2
(Shstr o) < ¥ s = Ll + 2 i s (02970

iel iel

The proof is completed. O

Now we can present our preliminary analysis for sparsity of algorithm (2). The £!-regularizer plays a key role to produce
sparse approximations. The phenomenon that the ¢!-regularizer can be used to reproduce sparsity has been observed
in LASSO [19] and compressed sensing [3,6], usually under the assumption that the approximated function has a sparse
representation with respect to some basis or redundant system. Here we show that sparsity of f; in representation (3)
can be produced under assumption (1) which does not impose any sparse representation and is a common mild condition
in learning theory (e.g. [4,14,10]). The choice of the empirical features {¢¥}7; is important to ensure the sparsity and
convergence rates for the algorithm.

Theorem 5. Under the same condition as in Theorem 4, with confidence 1 — § we have

CJZ”-:O, Vi=p+1,...,m

Proof. By Lemmas 2 and 4, we know that for any 0 <8 < 5 there exists a subset Zs of Z™ of measure at least 1 — 2§ such
that both (17) and (18) hold for each z € Z;.
Let i €{1,...,m} and z € Zs. Then from (18), we see that

16Mx log 2
235157| < 24F i )+ 203157 (£, 00| < 28 )] +
Applying Lemma 5 to I = {i}, we have

8k2log 2 16Mk log 2
20X|SE| < A lgplik 5 gy

Jm Jm
By Lemma 1, [AX — Ai| < Lk — L¥llns, 50 (X' < (A + 1Lk — L% lus) ™+ < 2" + |k — LEIIfE"). Tt follows that for
i=1,...,m, the right-hand side of (20) has an upper bound
(log %)1+r

Jm

+2M7 g, Ik (AY) (20)

272 g o kA T+ Crp

Therefore, when
lo 23141
(log 5) <

21+2r )\.1+T+C < ,
I8 lhy™ + Crp i <y

(21)
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we know that
20¥[SH <y, Vi=p+1,....m

which by Theorem 1 yields c;,i =0fori=p+1,...,m. Then the conclusion of Theorem 5 follows by scaling 25 to §, for
which (21) corresponds to (13). O

From Theorem 5 we see immediately that when the eigenvalues {A;} decay polynomially, the sparsity can be explicitly
1 1
derived by taking p to be [m2x(+n ], the smallest integer greater than or equal to m2+7

Corollary 1. Assume (1). If for some D, > 0 and & > 0, A; < D2i~% holds for each i, then when y > 2'*2' D)™ |ig,llx +
Ck,p(log %)”r)/\/ﬁ we have with confidence 1 — §,

1
¢z . =0, VmZaim 4+1<i<m.
5. Error analysis
In this section, we prove our error bounds stated in Theorem 4.

Proof of Theorem 4. We follow the proof of Theorem 5 and know that for any 0 < § < % there exists a subset Zs of Z™ of
measure at least 1 — 2§ such that both (17) and (18) hold for each z € Z;. Moreover when (21) is satisfied and z € Zs, we

have C)Z/,i =0 for every i e {p+1,...,m} and those i € {1, ..., p} with A¥ < =, which follows directly from (20). Hence
=29l
ieS
where S is defined by S={i e {1,...,p}: A} > %‘”}. It follows from the orthogonal expansion in terms of the orthonormal
basis {¢}} that
2 2
172~ Fol= D (For X))’ + D (fpr 8F) — 2)° =2 A1+ A (22)
ieN\S ieS

Let z € Zs in the following proof.
We bound the first term A1 on the right-hand side of (22) by decomposing it further into two parts with f, =

> Mdjg; = pt Adjgj+ Z 1 Ajdj¢;. Here we have written g, = >321dj; with {d;} € €2 and |{dj}ll,2 = g, llk-
The part with Z]ZP-H is easy to deal with: since {¢}} is an orthonormal basis, we have

o | oo 2, 172
(2< 5 x;dj¢j,¢r>) S de,

i=1 1j=p+1 Jj=p+1

<llgollk A - (23)

K

The part with Z?:] can be estimated by the Schwarz inequality as

p 2\ 1/2 p 1/2
r X 2 T x)2
( Z <Z)\jdj¢ja¢j> > << Z Itdi}| ;2 Zk? (). #7) ) '

ieN\S \ j=1 ieN\S j=1

We continue to bound } ;. s Z er (#j, ¢¥)? in two cases.
Case 1: r>1.Fori>p+1, we observe that A?' <277102" + (hj — A)*) and

(1 = 207 <2005 — )2 <232y 2+ [ = 3.

It follows that
p
szf 9;. 91 < Z (" 42232 10 = A7+ 2232 2 = 1) s 7).

which in connection with Lemma 1 and (19) yields
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oo [o.¢]

i=p+1 j=1 i=p+1 i=1 i,j=1
2r—1 2r 142r4 2r—2
<Y 2L - iy
i=p+1

Forie({1,...,p}\ S and j<p, we have |Aj —A¥| > 71 and hence Azr <4A32 |5 — A%, So by (19),

S e <422 S g — 3Pl o < 43— L

ie{1,....p}\S j=1 i,j=1
Thus in the first case we have
p o0
YAy o) <2 Y AF a2 4 1)L - L
ieN\S j=1 i=p+1

Case 2: r < 1. we notice that k?' < A%“U? and obtain from the above estimate

p 00
D e ol <24 30 AP+ 121 7 Lk — Lk -

ieN\S j=1 i=p+1

The bounds for the two cases together with (23) give a bound for Ay as

Jar < | el 2 (T 48"+ 253 L = LR ). > 1,
T A2l d LA )2 2Ly — LX ifr <1
llgpllk p+1+ ”{ ]}”[2 p ((Zl=p+l 1) + ” K K”HS)’ r<1.

Now we turn to the second term A, on the right-hand side of (22). Observe that the case cZ

RHES 2’;,‘ So for either ¢% ;=0 or ¢ ; =S¥+

pi= = 0 corresponds to

2)3" we always have

X VA y z X ] X X z
(fpr 07) =3 4| < 2 +(SF—(fp. #7)| < 2_)#(3/‘?2)‘:‘ |(fp. #7) = SEI)-

But for each i € S, there holds ZA}‘ > Ap. Hence
1/2 1/2
2 V2py  2V2 2
JA; = (Z((fp,q&l?‘) ~) ) < (0T el)T)
ies p P Nes
By Lemma 4, this implies
V2 16+/2Mk log 2
Ay < Py | V2 g5
v . S/

Putting the bounds for A; and A, into (22), we know that for z € Z;, ||f; — fpllk is bounded by

1/2 23+r)\4ff‘1 21 2 .
V2py . 16v/2Mxk log 2 2T||gpllz<((2?2p+1k?)/ + R °g5), ifr>1,
A + Ap/m + r—1 00 n1/2 | 8k%log? .
P P 2lgplicky  ((D2pa i) ? + 2020), ifr <1,

IgpllkAy +

Then the conclusion of Theorem 4 follows by scaling 2§ to §. O
6. Achieving both sparsity and learning rates

We are in a position to derive both sparsity and learning rates in two special situations, based on our general analysis.
Proof of Theorem 2. We take p = [m!/@*2(0+)] to give m!/@x2(+1) < p < 2m!/Ce2(141) 50 ) 1+ < D)*"//m. Thus the

choice of y in (7) implies condition (13) of Theorem 5. This verifies (8) as well as the condition of Theorem 4. We bound
the first three terms of the right-hand side of (14) in Theorem 4 as follows. First,
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V2 C 4 __or 1 1
||gp||1(k; + )\'P)/ + Iy ;ﬁ logg < ||gp||KD£m 20 (1+71) +2D1—12a1ym(z+l¥1)2a2(1+r)
p p

_ 20pr—1—(a1—ap)

1 @ _ 1+r
+ C3D]—120l] <log g>m72+w]l+r) < C] (log g> m 4oy (1+1)

where C1 = [Ig, Ik D} + 21+ D1 2147 g, |k Dy + Ci p) + C3D7 1290,
When r > 1, since 2rap > 1,

o0

o 2r ,1-2ra
S apan2l ¢ par / x2re gy = 2P T2
i ~ —_ B

X 27‘0[2 -1
i=p+1 p)

So the last term of the right-hand side of (14) can be bounded as

e 172 r 1-2
C4)\Lnin{r—1,0} ( Z A;nax{Zr,Z}) < C4D2 m Wﬁzﬂ .
iZpi1 J2rap —1

Similarly, when 0 <r < 1, since oy > % + (1 —r)aq, we have

00 172 r—1,—aq(r—1 - -1
. CaD a(r-1)p,p(1-22)/2  c,p'—1p, 1+20-na1-20p
C4kg11n{r—1,0}< Z k;nax{Zr,Z}) < 407 P 2p < 44 2 T

< m 4ay (1+1)
V20 —1 V200 — 1

i=p+1
Now we use Theorem 4 to obtain
_ 200pr—1-2(a1 —ap)

4 1+r
[ o= £k <G (10g 5) m- el

with confidence 1 — 8, where

CaD})
Ci=Ci+ \/Tzl_’ whenr=1.
Gy Dz when0<r<1
V20,1 ’
The proof of Theorem 2 is complete. O
Proof of Theorem 3. Choosing p = [%1, we have
1 1 1 1
og(m+ 1) <p< og(m+ 1)

21 +n)logBy Ps 2(1+r1)logpBy’
It follows that

log B

1
m2im < ,35 < 5{’ < B1(2m) 2Ty
<D

The assumption 1, zﬂ;p in (10) tells us that

1+
A]-&-r < D2 '
p = \/ﬁ
Then
(logé_l)1+r D1+r (logl_l)]+r
21+2r A1+T+C 8 <21+2T 2 +C 8 _
lgpllxhy K™ ”gp”Kﬂ K.p

Jm
So condition (13) in Theorem 5 holds, and thus we know that with confidence 1 — 3§, C)Z/.i =0 for p+1 < i< m. This verifies
the desired conclusion (11) for sparsity.

Now we turn to the error analysis. By Theorem 4, bound (14) holds with confidence 1 — §. We estimate the first three
terms of the right-hand side of (14) as

r—(log %/logﬂz)

2 lo 4 __r ~ 4 14 _
ligpllxry + kpy +C3 f/‘% < llgpllkDym™ 200 4 Cp (10g5) Vlog(m + 1)m™— 20m
p p

. 4 log fy _ r—log 7 /10gh2)
+ C3D7 <log 3)512 204nloghy ™~ 204D , (24)
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Table 1

Parameters.
i Coefficient A; Variation v,.2 Center P;
1 2.0 0.622 (0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
2 -3.5 0.642 (0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6)
3 0.7 0.652 %(0.9, 1.7,2.5,3.3,4.1,49,5.7,6.5,7.3,8.1)

~ _ log By
where C2 = (125 + qeniegs) /2 18Ik D3 + Ci p) D7 pr2 7 0Ters

When r > 1, the last term on the right-hand side of (14) can be bounded as

0 1/2 o 1/2 pr

‘ C4DL RSP C4D', r

C4< § )\121’) <C4D5< § ﬁ2—2r1> — 4 2:32 g 45 m~2a . (25)
iZpt1 iZpt1 S B

Similarly, when 0 <r < 1, we have

1
(1-r)log 1 Dzm_ 2(0+1)

00 1/2
0%1( > ﬁ) < C4DY7 By (2m) AT esR
B3 —1

i=p+1
Putting this estimate in the case 0 <r < 1 and (25) in the case r > 1 and (24) into bound (14) tells us that with confidence
1 — 4, the desired bound (12) for the error holds true with the constant C, given by

CaD}y

, whenr > 1,
1 T -1 2 110g/151 fa 1 By 1
Co = —— (gl D} + D7 Br27 087 ) + T + Cani-1 gD,  O=Dlossy
/1og2 Vieg2 | =221 A1 2530 0kel; | whenO <71 < 1.
B5-1

The proof of Theorem 3 is complete. O

7. Further remarks and discussion

We have proposed a modified KPM (2) for regression with ¢!-regularizer. Analysis for the error in the Hy-metric has
been conducted by means of a priori condition (1) concerning the regularity of the regression with respect to the kernel
K and the marginal distribution px. Our learning rates have been given in terms of special choices of the regularization
parameter y > 0 which depends on a priori condition (1). Condition (1) is a standard assumption for least square regularized
regression with an infinitely dimensional My in the literature of learning theory [4,14,16,18] and almost all theoretical
error bounds are based on similar a priori conditions. To the best of our knowledge, the only theoretical error analysis for
a learning algorithm with a regularization parameter determined directly by the data was given recently in [5], where a
cross-validation approach was rigorously proved.

It is a common practice to choose the regularization parameter by a cross-validation method, which often leads to sat-
isfactory simulation. Here we present an example to show how to choose the regularization parameter y for algorithm (2).
Rigorous theoretical analysis for such a process will be considered in our further study.

Example 2. We generate the regression function f, on R10 as

> x — P;|?
fo =Y Ai exp(——;), (26)
r— 2v;

where the parameters are prescribed in Table 1. The data set {(x;, yi)}T is drawn independently with x;’s uniformly dis-
tributed on [0, 1110, y; = fo(xi) + €;, and €;’s being Gaussian noise with © =0, 0% =0.52 and truncated onto [—1.5,1.5].
The Mercer kernel K is the Gaussian with variance 0.60%. Table 2 shows the result of the simulation. For comparison, in the
last three columns we list the error performance of the least squares regularized regression (LSR) algorithm

1 & 2
LR, = arg min { — xi)—yi) + 2 1.
f]_s}{,y1 gfeHK m ;(f( i) YI) i fllx
The notations y* and y;* in the second and sixth columns denote the optimal ¥ and y; respectively, which are selected

from a geometric sequence {10~4,..., 1072} of length 60 by 5-fold cross-validation. The learning error is estimated empir-
ically by independently drawing another unlabeled sample set {£;} uniformly on [0, 1710 of size 12,000 and with fZ = f)f*

2 .
or fLSR’y]* computing
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Table 2
Learning error.

m y* HCJZ/* llo Error 1 Error 2 v LSR Error 1 LSR Error 2
300 6.261e—3 16 9.708e—2 1.244e—-1 6.769e—3 0.3936 0.4951
600 6.769e—3 13 8.472e—-2 1.077e—-1 5.790e—3 0.3986 0.5042

1200 3.625e—3 16 6.569e—2 9.000e—2 4.582e—3 0.5229 0.6534

1800 2.270e-3 25 5.054e—2 6.467e—2 3.101e-3 0.5500 0.6945

2400 2.099e—3 20 4.289%e—-2 6.249e—2 2.653e—3 0.5246 0.6764

1 12,000
Error 1=——— > |f,(&) — f*&)],
12,000 “ 7o) !
j=1
1 12,000 1/2
2

Error2= ——— Y (fp(&) — f*¢&)

12’000 j_] ( PRS] J )

We have observed sparsity for the coefficients in the representation (3) of the output function in our algorithm. This
sparsity is different from that for the representation in terms of {Ky}i" ;. It would be interesting to extend our study to a
semi-supervised learning setting as indicated in Remark 4. Another extension is to take empirical features in different ways
by means of efficient numerical methods for the Gramian matrix K. Exploring sparsity in such extended settings would be
of much value for applications.
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